Extensions 1→N→G→Q→1 with N=C6 and Q=C22⋊C4

Direct product G=N×Q with N=C6 and Q=C22⋊C4
dρLabelID
C6×C22⋊C448C6xC2^2:C496,162

Semidirect products G=N:Q with N=C6 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C61(C22⋊C4) = C2×D6⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C648C6:1(C2^2:C4)96,134
C62(C22⋊C4) = C2×C6.D4φ: C22⋊C4/C23C2 ⊆ Aut C648C6:2(C2^2:C4)96,159

Non-split extensions G=N.Q with N=C6 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C6.1(C22⋊C4) = C424S3φ: C22⋊C4/C2×C4C2 ⊆ Aut C6242C6.1(C2^2:C4)96,12
C6.2(C22⋊C4) = C23.6D6φ: C22⋊C4/C2×C4C2 ⊆ Aut C6244C6.2(C2^2:C4)96,13
C6.3(C22⋊C4) = C6.D8φ: C22⋊C4/C2×C4C2 ⊆ Aut C648C6.3(C2^2:C4)96,16
C6.4(C22⋊C4) = C6.SD16φ: C22⋊C4/C2×C4C2 ⊆ Aut C696C6.4(C2^2:C4)96,17
C6.5(C22⋊C4) = C2.Dic12φ: C22⋊C4/C2×C4C2 ⊆ Aut C696C6.5(C2^2:C4)96,23
C6.6(C22⋊C4) = D6⋊C8φ: C22⋊C4/C2×C4C2 ⊆ Aut C648C6.6(C2^2:C4)96,27
C6.7(C22⋊C4) = C2.D24φ: C22⋊C4/C2×C4C2 ⊆ Aut C648C6.7(C2^2:C4)96,28
C6.8(C22⋊C4) = C12.46D4φ: C22⋊C4/C2×C4C2 ⊆ Aut C6244+C6.8(C2^2:C4)96,30
C6.9(C22⋊C4) = C12.47D4φ: C22⋊C4/C2×C4C2 ⊆ Aut C6484-C6.9(C2^2:C4)96,31
C6.10(C22⋊C4) = D12⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C6244C6.10(C2^2:C4)96,32
C6.11(C22⋊C4) = C6.C42φ: C22⋊C4/C2×C4C2 ⊆ Aut C696C6.11(C2^2:C4)96,38
C6.12(C22⋊C4) = C12.55D4φ: C22⋊C4/C23C2 ⊆ Aut C648C6.12(C2^2:C4)96,37
C6.13(C22⋊C4) = D4⋊Dic3φ: C22⋊C4/C23C2 ⊆ Aut C648C6.13(C2^2:C4)96,39
C6.14(C22⋊C4) = C12.D4φ: C22⋊C4/C23C2 ⊆ Aut C6244C6.14(C2^2:C4)96,40
C6.15(C22⋊C4) = C23.7D6φ: C22⋊C4/C23C2 ⊆ Aut C6244C6.15(C2^2:C4)96,41
C6.16(C22⋊C4) = Q82Dic3φ: C22⋊C4/C23C2 ⊆ Aut C696C6.16(C2^2:C4)96,42
C6.17(C22⋊C4) = C12.10D4φ: C22⋊C4/C23C2 ⊆ Aut C6484C6.17(C2^2:C4)96,43
C6.18(C22⋊C4) = Q83Dic3φ: C22⋊C4/C23C2 ⊆ Aut C6244C6.18(C2^2:C4)96,44
C6.19(C22⋊C4) = C3×C2.C42central extension (φ=1)96C6.19(C2^2:C4)96,45
C6.20(C22⋊C4) = C3×C22⋊C8central extension (φ=1)48C6.20(C2^2:C4)96,48
C6.21(C22⋊C4) = C3×C23⋊C4central extension (φ=1)244C6.21(C2^2:C4)96,49
C6.22(C22⋊C4) = C3×C4.D4central extension (φ=1)244C6.22(C2^2:C4)96,50
C6.23(C22⋊C4) = C3×C4.10D4central extension (φ=1)484C6.23(C2^2:C4)96,51
C6.24(C22⋊C4) = C3×D4⋊C4central extension (φ=1)48C6.24(C2^2:C4)96,52
C6.25(C22⋊C4) = C3×Q8⋊C4central extension (φ=1)96C6.25(C2^2:C4)96,53
C6.26(C22⋊C4) = C3×C4≀C2central extension (φ=1)242C6.26(C2^2:C4)96,54

׿
×
𝔽